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Abstract

In the current paper the dimensional analysis of thermo-fluid-dynamic mechanisms taking place during high pressure treatment of
bio-substances is carried out. Both forced and free convection case is described. Additionally, the phase change in the pressurized med-
ium is considered. The significance of several terms in the conservation equation of momentum and energy is estimated. Especially in
systems with low velocity of fluid some terms in the governing equations can be neglected, e.g. irreversible transformation of kinetic
in thermal energy. The dimensionless numbers/groups that describe the fluid flow and phase transition at high hydrostatic pressure
are determined.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The high pressure technology opens many possibilities
for the developing of new processes and products in the
food and pharmaceutical industry sector. The high hydro-
static pressure enables more careful treatment of raw mate-
rials in comparison to traditional ‘‘temperature–time”
processes. The application of pressure up to 1 GPa can
be used for inactivation of enzymes, alteration of texture
and structure, sterilization and pasteurization and sup-
porting of phase transitions in bio-substances. Fig. 1
shows schematically the principle of high pressure batch
processing.

At the beginning of high pressure treatment the bio-sub-
stance is placed in a high pressure chamber and compressed
up to a certain pressure level. Subsequently the constant
pressure is held during a specified time. The pressure level
and the pressure holding time differs for diverse applica-
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tions. After pressurizing the decompression to ambient
pressure occurs. Bio-substance can be processed either in
a packed or in unpacked form. Obviously, liquid sub-
stances can serve as a pressure transferring medium them-
selves.

There are many literature positions describing investiga-
tions of the high pressure technology. Starting with works
of Bridgman [1,2] and coming to publications of the last 15
years the general principles of high pressure processing of
different substances and the effect of high pressure on their
individual components [3,4] are described. Additionally,
advantages and important possibilities of high pressure
treatment of food are reported by Knorr [5].

For investigation of the high pressure process experimen-
tal in situ methods are also used. These methods are applied
by Först et al. [6,7] in order to define the viscosity of water
and aqueous solutions under high pressure. Pehl et al. [8,9]
apply in situ methods for visualization of temperature and
velocity distributions in liquid bio-substances during high
pressure treatment. The observations of temperature and
velocity fields reveal that due to local temperature dif-
ferences the high pressure treatment is not homogeneous
in the whole volume of the pressurized medium [10].
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Nomenclature

a thermal diffusivity
Ar Archimedes number
cp specific thermal capacity with constant pressure
D diameter
Dt deformation velocity tensor
Da Darcy number
e specific energy
Ec Eckert number
f mass fraction
FG volume force
Fr Froude number
g gravity
Gr Grashof number
h specific enthalpy
H total enthalpybH specific total enthalpy
H specific total enthalpy without crystallization

enthalpyeH enthalpy of crystallization
K porosity function
K0 permeability
L characteristic length
Lf latent heat
p pressure
Pr Prandtl number
q vector of the heat flow density
~R force of resistance
Re Reynolds number
S entropy
Sk source term (phase transition)
Ste Stefan number
T temperaturebT stress tensor
DT temperature difference
t time
tc compression time
tp process time
ts conversion time
u specific internal energy
v specific volume
V volume

~W velocity vector
Wx velocity in x-direction
Wy velocity in y-direction
Wz velocity in z-direction
W0 initial velocity
x, y, z cartesian coordinates
D Laplace operator
$ Nabla operator

Greek symbols
a thermal expansion coefficient
d unit tensor
b compressibility
m kinematic viscosity
k heat conductivity
q density
g dynamic viscosity
s viscous stress tensor
n volume fraction
f second coefficient of viscosity
U dissipation function
h dimensionless temperature ratio
PA dimensionless number – buoyancy
PD dimensionless number – dissipation function
PP dimensionless number – permeability of mushy

region
PT dimensionless number – temperature increase

due to compression
PV dimensionless number – influence of volume

forces on energy balance

Indices

dyn dynamic
tot total
l liquid
� dimensionless value
0 initial value
s solid
stat static
w wall
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Hartmann et al. [11,12] investigated the convective and
diffusive transport effects under high pressure by means of
numerical simulation. The authors observed process
inhomogenities during inactivation of enzymes and
microorganisms.

The most important aspects of high pressure supported
phase changes can be found in Bridgman [13], Cheftel et al.
[14] or Kalichevsky et al. [15]. The background of investi-
gations of high pressure phase transitions for bio-
substances with dominating water content is the phase
diagram of water. Fig. 2 illustrates the phase diagram of
water up to 500 MPa with some schematically drawn pos-
sibilities of phase transition under high pressure.

The mathematical description and modelling of heat and
mass transfer during solidification at normal pressure is
widely reported by Voller [16], Voller et al. [17,18], Swami-
nathan and Voller [19], Bennon and Incropera [20,21] or
Ni and Incropera [22,23]. Kowalczyk et al. [24] as first
applied the enthalpy porosity method for the mathemati-
cal modelling and numerical simulation of water–ice phase
changes at both normal and high pressure. In the current
contribution a detailed dimensionless analysis of the high



Fig. 1. Schematic illustration of high pressure treatment of bio-
substances.
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Fig. 2. Pressure temperature diagram of water with possible phase
transition processes. ABCD – high pressure assisted freezing/thawing,
ABEFG – high pressure induced freezing/thawing, ABEFHI – high
pressure assisted freezing/thawing with the phase change between ice I and
ice III, ABEJ – phase change of water in the temperatures above 273 K.
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pressure processes is carried out. The dimensionless
description focuses on generalization of statements about
the thermo-fluid-dynamical mechanisms occurring during
high pressure treatment. The processes both with forced
and free convection accompanied by phase transition of
pressurized medium are considered.
2. Governing equations

This paper focuses on mathematical and dimensionless
description of high pressure processes and specification of
effects due to compression of pressurized medium. The con-
servation equations of mass, energy and momentum for
compressible media build the basis for the mathematical
model. It is assumed that the pressurized substance is a
Newtonian fluid and materially homogeneous. Moreover,
the fluid is chemically inert and electrically uncharged.
The mathematical definition is carried out with Cartesian
coordinates. The governing equations for compressible
medium are written as follow.

2.1. Conservation equation of mass

oq
ot
þr � ðq~W Þ ¼ 0: ð1Þ
2.2. Conservation equation of momentum

q
o~W
ot
þ ~W � r
� �

~W

" #
¼ r � bT þ F

*

ð2Þ

with the specific gravitational force

~F ¼ ~F G ¼ q~g ð3Þ
and total stress tensorbT ¼ �pdþ s: ð4Þ
The viscous stress tensor is defined as

s ¼ f� 2

3
g

� �
r � ~W
� �

dþ g r~W þ r~W
� �T

� �
¼ f� 2

3
g

� �
r � ~W
� �

dþ 2gDt ð5Þ

with the second viscosity coefficient

f ¼ g0 þ 2

3
g ð6Þ

and the symmetrical deformation velocity tensor

Dt ¼
1

2
r~W þ r~W

� �T
h i

: ð7Þ
2.3. Conservation equation of energy

The description of the energy balance for a system can
be carried out differently. A possible formulation refers
to the specific total energy

e ¼ uþ
~W 2

2
; ð8Þ

whereby e is the sum of the internal and kinetic energy. In
this situation the conservation equation of energy in differ-
ential form can be written as

q
Du
Dt
þ q

D

Dt

~W 2

2

 !
¼ �r � qþr � bT ~W� �

þ q~g � ~W : ð9Þ

In the first term on the right side of the energy equation q

denotes the vector of heat flow (Fourier law)

q ¼ �krT : ð10Þ
In many practical applications, e.g. in codes for numerical
simulation (CFD) the energy balance is used in an enthalpy
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formulation. In order to convert Eq. (9) into the enthalpy
equation the specific enthalpy is defined as

h ¼ uþ pv ¼ uþ p
q
: ð11Þ

Insertion of Eqs. (10) and (11) into Eq. (9) and considering
the decomposition of the stress tensor according to Eq. (4)
results in the following enthalpy equation:

q
Dh
Dt
þ q

D

Dt

~W 2

2

 !
� q

D

Dt
p
q

� �
¼ r � krTð Þ � pr � ~W � ~W � rp þr � s � ~W

� �
þ q~g � ~W :

ð12Þ

Defining the specific total enthalpy

bH ¼ hþ
~W 2

2
ð13Þ

and applying the product rule to the third term of the left
side of Eq. (12) results in

q
D bH
Dt
�Dp

Dt
þ p

q
Dq
Dt

¼ r � krTð Þ � pr � ~W � ~W � rp þr � s � ~W
� �

þ q~g � ~W :

ð14Þ

Some further mathematical transformations in the second
and third term lead finally to

o

ot
q bH� �

þr � q~W bH� �
¼ op

ot
þr � krTð Þ þ r � s � ~W

� �
þ q~g � ~W : ð15Þ

The energy balance can be also presented in a formulation
for temperature. On the basis of the enthalpy equation for
the specific enthalpy

q
Dh
Dt
�Dp

Dt
¼ r � krTð Þ þ gU ð16Þ

and under consideration that

Dh
Dt
¼ oh

op

� �����
T

Dp
Dt
þ oh

op

� �����
p

DT
Dt

¼ 1

q
1� aTð ÞDp

Dt
þ cp

DT
Dt

ð17Þ

the thermal energy equation is written as

cpq
DT
Dt
¼ aT

Dp
Dt
þr � krTð Þ þ gU: ð18Þ

The third expression of the right side of Eq. (18) contains
the dissipation function
U ¼ 2
oW x

ox

� �2

þ oW y

oy

� �2

þ oW z

oz

� �2
" #

þ oW y

ox
þ oW x

oy

� �2

þ oW z

oy
þ oW y

oz

� �2

þ oW x

oz
þ oW z

ox

� �2

� 2

3

oW x

ox
þ oW y

oy
þ oW z

oz

� �2

: ð19Þ
3. Governing equations for the phase transition under high

pressure

In the current paper the phase change problem is mod-
elled with the enthalpy porosity method, e.g. [19,20]. The
derivation of the complete model demands some assump-
tions to the mathematical model. In presented relation-
ships, a subscript (l) marks the liquid phase and (s)
denotes the solid phase.

The sum of the volume and mass fractions are

fl þ fs ¼ 1; ð20Þ
nl þ ns ¼ 1: ð21Þ

The density of a mixture consisting of two phases is meant
as

q ¼ nlql þ nsqs: ð22Þ

The relationships between the mass and volume fractions
in liquid and solid phases are calculated with

fl ¼
qlnl

q
ð23Þ

and

fs ¼
qsns

q
: ð24Þ

The velocity vector of mixture is estimated as a sum of
velocities of the considered phases

~W ¼ fl
~W l þ fs

~W s: ð25Þ

Similarly to the definition of the velocity vector, the total
enthalpy in the enthalpy equation is divided into the
enthalpy of the liquid phase and the solid phasebH ¼ fl

bH l þ fs
bH s: ð26Þ

There are four possibilities to classify the velocity of the li-
quid and solid phase in a phase change region: (i) the solid
phase possesses the same velocity as the liquid phase – e.g.
substances like wax or glass, (ii) the velocities of two phases
are different, (iii) the velocity of the solid phase is constant
and (iv) the velocity of the solid phase equals zero. In order
to avoid a very complex description of interactions between
two moving phases, in the current work the last case is con-
sidered. Moreover, in the region between liquid and solid
phase the dendritic model is supposed [18].

Since conservation equation of mass can be used in
unchanged form, the momentum equation (2) and the
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enthalpy equation (15) are enhanced by additional terms to
enable the modelling of phase change phenomena.

3.1. Conservation equation of momentum with phase
transition

The momentum equation that considers phase transition
comes into existence after summation of the momentum
equation for liquid and solid phase

q
o~W
ot
þ ~W � r
� �

~W

" #
¼ �rp þr � sþ F

*

�~R: ð27Þ

With the last term on the right side, changes in the fluid
velocity within the phase transition region and the velocity
of the solid phase are modelled

~R ¼ g
K

~W � ~W s

� �
: ð28Þ

In Eq. (28) K describes the Carman–Kozeny porosity
model

K ¼ K0

f 3
l

ð1� flÞ2
: ð29Þ

The porosity model controls the deceleration of the liquid
phase velocity within the phase transition region and
ensures that the velocity of solid phase becomes zero. Ice
crystals developing in a mushy region cause the decelera-
tion of the fluid velocity. They affect some modifications
of permeability in this region. Additionally, it is assumed
that in the solid phase no internal tensions exist. The vol-
ume forces, which have their origin in velocity differences
between both phases, can be neglected within the phase
transition region due to very small values in comparison
to the Darcy constant. Although, it is supposed that the
structure of mushy region changes during high pressure
treatment, the dependency of porosity on pressure and
temperature is not taken into account.

3.2. Conservation equation of energy with phase transition

The conservation equation of energy

o

ot
qH
� �

þr � q~W H
� �

¼ op
ot
þr � krTð Þ þ r �

��
g

�
r~W þ r~W

� �T

� 2

3
r � ~W d

��
� ~W
�
þ q~g � ~W þ Sk ð30Þ

arises after addition of energy equations for several phases.
The last term in Eq. (30)

Sk ¼ �
o

ot
qfl
eH� �
�r � qfl

~W l
eH� �

ð31Þ

describes the crystallization enthalpy released during freez-
ing and thawing. In above presented source term the crys-
tallization enthalpy is calculated with
eH ¼ Z T l

T s

ðcpl
� cps

ÞdT þ Lf : ð32Þ

Generally the crystallization enthalpy can be seen as a sum
of the latent enthalpy Lf and the difference between the
enthalpies of fluid and solid phases. The source term Sk

can be written in the form of Eq. (31) after both terms of
the total enthalpy on the left side of Eq. (15) are replaced
by Eq. (26), whereby, the enthalpy of the liquid phase
equals

bH l ¼
Z T

T s

cpl dT þ
~W 2

l

2
þ eH ¼ hl þ

~W 2
l

2
þ eH ð33Þ

and the enthalpy of the solid phase has following form:

bH s ¼
Z T

T s

cps dT þ
~W 2

s

2
¼ hs þ

~W 2
s

2
: ð34Þ

Consequently the left side of the enthalpy equation takes
the form

LSG ¼ o

ot
qfshs þ qflhlð Þ þ o

ot
qfs

~W 2
s

2
þ qfl

~W 2
l

2

 !

þr � qfs
~W shs þ qfl

~W lhl

� �
þr � qfs

~W s

~W 2
s

2
þ qfl

~W l

~W 2
l

2

 !

þ o

ot
qfl
eH� �
þr � qfl

~W l
eH� �

: ð35Þ

The addition of terms with the thermal and kinetic enthal-
py leads to the expression on the left side of Eq. (30) and to
the source term (31), respectively.

The equation system is completed with a function of
phase transition

fl ¼
1; if H > H l;
H�H s

H l�H s
; if H s < H < H l;

0; if H < H s

8><>: ð36Þ

and the equation of state for pressurized medium

q ¼ qðT ; pÞ: ð37Þ
The phase transition function takes values between 1 and 0.
If the enthalpy of a substance exceeds the liquidus enthalpy
then the value fl ¼ 1 indicates the liquid phase. In contrast,
if the enthalpy is lower than the solidus enthalpy than
fl ¼ 0.
4. Dimensional analysis of the high pressure process

The high pressure treatment of bio-substances is affected
by the large number of internal and external parameters.
The dimensional analysis gives the possibility to reduce
their number and to generalize the statement about the
process mechanisms and phenomena. The dimensionless
numbers or groups that describe the high pressure process
can be achieved using algebraic equations, differential
equations or relevance lists [25]. In the current contribution
the dimensionless description of the high pressure process
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and the determination of dimensionless numbers is derived
from the governing differential equations.

4.1. Dimensional analysis for liquid substances

The high pressure supported phase transition takes place
due to specific temperature and pressure conditions in a
closed and kept at a constant temperature or as adiabati-
cally considered high pressure chamber. The classical high
pressure processing consists of three phases – see Fig. 3.
The compression is realised in the time t1, the pressure
holding phase in the time t2 and a decompression in the
time t3. During these steps of high pressure process differ-
ent thermo-fluid-dynamical phenomena occur. As pre-
sented in works of Pehl et al. [8,9] and Hartmann and
Delgado [11], the fluid flow in the chamber is strongly
affected by forced convection during compression. On the
other hand free convection dominates pressure holding
phase.

The pressure can be built up or reduced either by the
supply/discharge of additional portion of pressure medium
or by piston movement. Fig. 4 illustrates the possibilities of
the high pressure generation in the chamber.

The dimensional analysis of governing equations is
started for the case with forced convection and phase
t1

p

tt2 t3

holding phase 

decompression

compression 

Fig. 3. The typical characteristics of the high pressure process.
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Fig. 4. High pressure chamber. (a) Compression due to additional mass transp
system without the mass transport and piston movement – e.g. pressure chang
change. Since the pressure plays a key role in momentum
and energy equation, one assumption is taken for its better
handling. The total pressure is known as a sum of the static
and dynamic pressure

ptot ¼ pstat þ pdyn ð38Þ

with

pdyn ¼
1

2
qW 2: ð39Þ

An exact analysis of the conservation equations shows that
in the momentum equation the dynamic pressure and in the
energy equation the static pressure is responsible for
description of the fluid flow and the temperature increase
caused by compression respectively. This assumption has
a crucial consequence for dimensional analysis.

4.1.1. Dimensionless conservation equation of mass

The conservation equation of mass for two-dimensional
problem becomes dimensionless with the following dimen-
sionless values:

q� ¼ q
q0

¼ 0ð1Þ; ð40Þ

t� ¼ tW 0

L0

¼ 0ð1Þ; ð41Þ

x� ¼ x
L0

¼ 0ð1Þ; ð42Þ

y� ¼ y
D
¼ 0ð1Þ; ð43Þ

W �
x ¼

W x

W 0

¼ 0ð1Þ; ð44Þ

W �
y ¼

W y
W 0D

L0

¼ W yL0

W 0D
¼ 0ð1Þ: ð45Þ

In order to ensure that the dimensionless velocity of fluid in
y-direction remains in the order of magnitude between 0
and 1, the relationship between Wy and W0 is extended
W0

c

∅ D 

L
0

∅ d Tw

g α, β, 
ρ, η, 
λ, cp, H

~
,

fl, Tl

W0= 00 Lg ΔTα

ort into the pressure cell, (b) compression realised by piston movement, (c)
es due to phase transition.
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with the geometrical ratio D/L. However this treatment of
velocity components should be taken into account particu-
larly in the case of the piston movement.

The implementation of the dimensionless variables in
the conservation equation of mass and the division of both
sides of equation with ðq0W 0=L0Þ lead to following dimen-
sionless form:

oq�

ot�
þ o

ox�
q�W �

x

� �
þ o

oy�
q�W �

y

� �
¼ 0 ð46Þ

or

oq�

ot�
þ r� � q�~W �� �

¼ 0: ð47Þ
4.1.2. Dimensionless conservation equation of momentum

Using the dimensionless variables (40)–(45) in Eq. (27)
and additionally considering further definitions

g� ¼ g
g0

¼ 0ð1Þ; ð48Þ

g0� ¼ g0

g00
¼ 0ð1Þ; ð49Þ

K� ¼ K
K0

¼ 0ð1Þ; ð50Þ

~g� ¼ ~g
g0

¼ 0ð1Þ; ð51Þ

and

p� ¼ p

q0W 2
0

¼ 0ð1Þ ð52Þ

results in the following conservation equation of momen-
tum in the dimensionless form:

q�
oW �

x

ot�
þ W �

x

oW �
x

ox�
þ W �

y

oW �
x

oy�

	 

¼ � op�

ox�
þ 2

g0

q0W 0L0

o

ox�
g�

oW �
x

ox�

� �
þ g0L0

D2q0W 0

o

oy�
g�

oW �
x

oy�

� �
þ g0

q0W 0L0

o

oy�
g�

oW �
y

ox�

� �

� 2

3

g0

q0W 0L0

o

ox�
g�

oW �
x

ox�

� �
� 2

3

g0

q0W 0L0

o

ox�
g�

oW �
y

oy�

� �
þ L0g0

W 2
0

q�g�x

� g0L0

q0W 0K0

L0

L0

g�

K�
W �

x ;

q�
D
L0

oW �
y

ot�
þ D

L0

W �
x

oW �
y

ox�
þ D

L0

W �
y

oW �
y

oy�

	 

¼ � L0

D
op�

oy�
þ g0

q0L0W 0

L0

D
o

ox�
g�

oW �
x

oy�

� �
þ D

L0

g0

q0L0W 0

o

ox�
g�

oW �
y

ox�

� �
þ 2

g0

q0L0W 0

L0

D
o

oy�
g�

oW �
y

oy�

� �
� 2

3

g0

q0L0W 0

L0

D
o

oy�
g�

oW �
x

ox�

� �
� 2

3

g0

q0L0W 0

L0

D
o

oy�
g�

oW �
y

oy�

� �
� g0DL0

q0L0W 0K0

g�

K�
W �

y : ð53Þ
After some mathematical transformations and taking into
consideration the definitions of well known dimensionless
numbers like the Reynolds number

Re ¼ W 0L0

m0

¼ q0W 0L0

g0

ð54Þ

that describes the relationship of convective and diffusive
momentum transfer, the Froude number

Fr ¼ W 2
0

L0g
; ð55Þ

which designates the proportion of inertial force to gravita-
tional force and the Darcy number

Da ¼ K0

L2
0

; ð56Þ

that characterizes the porosity of the medium at the solid-
ification front, the final version of the momentum equation
in 2D space can be written

q�
oW �

x

ot�
þ W �

x

oW �
x

ox�
þ W �

y

oW �
x

oy�

	 


¼ � op�

ox�
þ 1

Re
2

o

ox�
g�

oW �
x

ox�

� �
þ L2

0

D2

o

oy�
g�

oW �
x

oy�

� �	
þ o

oy�
g�

oW �
y

ox�

� �
� 2

3

o

ox�
g�

oW �
x

ox�

� �
� 2

3

o

ox�
g�

oW �
y

oy�

� �

þ 1

Fr
q�g�x �

1

DaRe
g�

K�
W �

x ;

q�
D
L0

oW �
y

ot�
þ D

L0

W �
x

oW �
y

ox�
þ D

L0

W �
y

oW �
y

oy�

	 

¼ � L0

D
op�

oy�
þ 1

Re
L0

D
o

ox�
g�

oW �
x

oy�

� �
þ D

L0

o

ox�
g�

oW �
y

ox�

� �	
þ 2

L0

D
o

oy�
g�

oW �
y

oy�

� �
� 2

3

L0

D
o

oy�
g�

oW �
x

ox�

� �
� 2

3

L0

D
o

oy�
g�

oW �
y

oy�

� �

� 1

DaRe
D
L0

g�
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4.1.3. Dimensionless conservation equation of energy

The dimensionless conservation equation of energy is
prepared with the dimensionless variables introduced for
previous equations. Solely, an exception is taken for pres-
sure. Like mentioned above, in the dimensionless energy
equation only the hydrostatic pressure is considered (the
effect of the dynamic pressure on the energy balance is
assumed to be negligible). In order to achieve the value
in the order of magnitude of 0(1), the pressure is normal-
ized with initial amount of the density, the heat capacity
and the temperature

p� ¼ p
q0cp0T 0

¼ 0ð1Þ: ð58Þ
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Additionally, some new definitions of dimensionless vari-
ables are necessary

T � ¼ T
T 0

¼ 0ð1Þ; ð59Þ

h� ¼ h
cp0T 0

¼ 0ð1Þ; ð60Þ

k� ¼ k
k0

¼ 0ð1Þ; ð61Þ

f �l ¼ fl ¼ 0ð1Þ; ð62Þ

eH � ¼ eH
Lf

¼ 0ð1Þ: ð63Þ

Considering the dimensionless numbers, the energy equa-
tion for 2D-cases is obtained
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ð64Þ

The dimensionless numbers are defined as the Eckert
number

Ec ¼ W 2
0

cp0T 0

; ð65Þ

which describes relationship of kinetic energy and enthalpy
and supplies a measure for the compressibility of the pres-
surized fluid, the Prandtl number

Pr ¼ g0cp0

k0

; ð66Þ

that expresses the ratio between momentum and thermal
diffusivity and the Stefan number
Ste ¼ cp0DT
Lf

; ð67Þ

which characterizes the phase transition. The product of
dimensionless numbers Re and Pr gives the Peclet number

Pe ¼ RePr: ð68Þ
4.2. Dimensionless conservation equations – pure free

convection

During the pressure holding step the fluid flow in the
high pressure chamber is formed by free convection. The
free convection is developed due to density changes of pres-
surized medium. These changes are generated particularly
through temperature gradients. The dimensionless descrip-
tion of processes with free convection and that with forced
convection differs in some points. Because of the absence of
the inlet velocity of the fluid into the container a special
view on the definition of a new characteristic velocity by
free convection is required. Thus, the new characteristic
reference velocity is calculated with

W 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ga0DTL0

p
: ð69Þ

Moreover, much longer process time in comparison to
compression phase induces a special treatment of the
dimensionless time. Eq. (41) proceeds from the maximum
compression time tc as a characteristic time

t� ¼ t
tc

¼ 0ð1Þ: ð70Þ

Simultaneously multiplication and division of this equation
with a new process time for the holding phase tp results in

t� ¼ t
tp

tp

tc

¼ t
tp

t�s ¼ 0ð1Þ: ð71Þ

Thus, with the dimensionless time t�s ¼ tp=tc a time conver-
sion for long lasting processes takes place, e.g., the pressure
holding phase during sterilization of bio-substance or
freezing/thawing at constant pressure.

4.2.1. Dimensionless conservation equation of mass – pure

free convection

The dimensionless conservation equation of mass for
compressible media with free convection is identical to
Eq. (47).

4.2.2. Dimensionless conservation equation of

momentum – pure free convection

In systems with free convection the fluid flow is driven
by the volume force rq �~g. For compressible media where
the density is taken as a function of pressure and tempera-
ture q = q(p,T) the modified Boussinesq approximation
serves for appropriate description of the density difference

ðq� q0Þ ¼ q0ðbDp � aDT Þ ¼ q0ðbðp � p0Þ � aðT � T 0ÞÞ:
ð72Þ
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This approach requires consideration of dimensionless
values of the thermal expansion coefficient

a� ¼ a
a0

¼ 0ð1Þ ð73Þ

and the compressibility coefficient

b� ¼ b
b0

¼ 0ð1Þ: ð74Þ

Thus, the dimensionless momentum equation in x-direc-
tion (gravity) is written as follow:
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Comparing with Eq. (57), other dimensionless numbers
appear in the momentum equation. The Galileo number

Ga ¼ g0L3
0

m2
¼ Re2

Fr
ð76Þ

describes the relationship between the gravitational and
viscous force, the characteristic number

PA ¼
a0DT þ b0Dpð Þg0L3

0

m2
0

¼ Ga a0DT þ b0Dpð Þ; ð77Þ

characterizes the buoyancy effect. In the pressure holding
phase (constant pressure conditions) the dimensionless
number PA changes into the Grashof number

Gr ¼ aDTg0L3
0

m2
¼ GaaDT : ð78Þ

Furthermore, in the momentum equation in x-direction the
term (Gr/Re2) occurs. Such a ratio of the Gr and Re num-
ber is known as the Archimedes number

Ar ¼ Gr

Re2
: ð79Þ

It balances the gravitational force to viscous force. Analy-
sing the Ar number can be stated that in the systems in
which the fluid flow is characterized with Re� 1 the effect
of buoyancy force is significantly reduced.
4.2.3. Dimensionless conservation equation of energy – pure

free convection
The derivation of the dimensionless conservation equa-

tion of energy for the systems with free convection leads to
q�
oh�

ot�
þ Ec

o

ot�
W �2

x

2

 !
þ Ec

D2

L2
0

o

ot�
W �2

y

2

 !"
þ W �

x

oh�

ox�

þW �
y

oh�

oy�
þ EcW �

x

o

ox�
W �2

x

2

 !
þ Ec

D2

L2
0

W �
x

o

ox�
W �2

y

2

 !

þEcW �
y

o

oy�
W �2

x

2

 !
þ Ec

D2

L2
0

W �
y

o

oy�
W �2

y

2

 !#

¼ op�

ot�
þ 1

GrPr
o

ox�
k�

oT �

ox�

� �
þ L2

0

D2

o

oy�
k�

oT �

oy�

� �	 

þ Ec

Re
W �

x

o

ox�
g� 2

oW �
x

ox�
� 2

3

oW �
x

ox�
þ

oW �
y

oy�

� �	 
�
þW �

y

o

ox�
g�

L0

D
oW �

x

oy�
þ D

L0

oW �
y

ox�

	 

W �

x

o

oy�
g�

L2
0

D2

oW �
x

oy�
þ

oW �
y

ox�

	 

þW �

y

o

oy�
g� 2

oW �
y

oy�
� 2

3

oW �
x

ox�
þ

oW �
y

oy�

� �	 
�
þ Ec

Fr
q�g�x � W �

x �
1

Ste
o

ot�
q�f �l eH �� �

� 1

Ste
W �

xl

o

ox�
q�f �l eH �� �

� 1

Ste
W �

yl

o

oy�
q�f �l eH �� �

: ð80Þ

The dimensionless group GrPr is defined as the Rayleigh
number

Ra ¼ GrPr: ð81Þ

This number described the ratio of the diffusive to the
convective heat transfer.

4.3. Dimensional analysis of enthalpy equation for solid

substance

Considering the phase changes in solid bio-substances at
constant pressure and assuming that there are no disloca-
tions inside the material, the system of equations is reduced
significantly. Thus, the enthalpy equation in the 2D case
can be written as
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Using already defined dimensionless variables the dimen-
sionless form of the enthalpy equation for solid substances
is achieved
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In this equation the dimensionless temperature ratio H is
calculated as

H ¼ DT
T 0

¼ T 0 � T l

T 0

¼ 1� T l

T 0

ð84Þ

and the Fourier number is defined with

Fo ¼ k0

q0cp0L2
0

tp: ð85Þ
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4.4. Dimensional analysis of the thermal energy equation

For direct analysis of an influence of several thermo-
fluid-dynamical mechanisms on temperature growth during
the high pressure treatment (e.g. compression), the dimen-
sional analysis of the thermal energy equation is carried
out. The thermal energy equation is written as follows:

cpq
DT
Dt
¼ aT

Dp
Dt
þr � krTð Þ þ gU� q eH Dfl

Dt
: ð86Þ

After transformation into the dimensionless form we
achieve
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ð87Þ

The thermal energy equation shows clearly that in systems
with low velocities of fluid, where Ec ? 0, the dissipation
function possesses a negligible influence on the temperature
increase during compression stage. Moreover, it can be
seen that the dimensionless number

PT ¼ a0T 0 ð88Þ

is responsible for the description of the temperature
changes in pressurized medium. This number can be also
derived from the formula for the computation of tempera-
ture increase due to compression in adiabatic systems

dT
dp

� �����
s

¼ aTv
cp

¼ aT
qcp

: ð89Þ

Further, the temperature increase in adiabatic systems can
be expressed in dimensionless form as

dT �

dp�

� �����
s

¼ a0T 0|ffl{zffl}
PT

a�T �

q�c�p
: ð90Þ
5. Discussion of the dimensional analysis

The analysis of the dimensionless governing equations
allows to state, which phenomena have a significant influ-
ence and which plays a minor role on the thermo-fluid-
dynamics of high pressure processes. A large value of the
dimensionless group, points out an elevated importance
of these mechanisms on the momentum and heat transfer
in high pressure autoclaves. In contrast, if dimensionless
parameters become very small values, it means that these
terms can be neglected.

First, the dimensionless groups that contain the Ec num-
ber are analysed. Because of very low velocities of fluid in
the majority of cases such dimensionless groups (e.g. Eq.
(91)) can be neglected.

PD ¼
Ec
Re
¼

W 2
0

cp0T 0

q0L0W 0

g0

¼ W 0m0

cp0T 0

: ð91Þ

Since the Re number depends on the characteristic velocity
proportionally, it can not sufficiently balance the decrease
(low velocities) expressed by the Ec number. It can be seen
that if Re ? 0, the Ec number converges to 0 quadratically.
Thus, the effect of dissipation is neglected in such cases.
Contrarily, at high velocities of fluid different effects com-
mence. In the situation when Re ?1 the Ec number
reaches also very high values and the dissipation function
gains in importance.

Because of compression, the temperature increase of a
pressurized medium is observed. The dimensionless des-
cription of this phenomenon

PT a�T � ¼ a0T 0a
�T � ð92Þ

is present in the equation of thermal energy (Eq. (87)). It
shows that greater values of the thermal expansion coeffi-
cient cause higher temperature of medium due to compres-
sion. For instance, the temperature increase of water,
ethanol and acetic acid can be compared. At the same ini-
tial temperature, ethanol and acetic acid warm up much
more than water. This phenomenon is caused by their lar-
ger thermal expansion coefficients. Additionally, the higher
initial temperature of the process, the higher increase of the
temperature of a pressurized medium is obtained.

In the cases with phase transitions, the crystallization
enthalpy is a significant component of the conservation
equation of energy. The dimensionless group

1

Ste
¼ Lf

cp0DT
ð93Þ

quantifies an influence of the latent heat on the energy bal-
ance. The higher latent heat of a substance, the higher con-
tribution of this term to the energy balance is noted.
Consequently, one of many technological advantages of
phase transitions in food under high pressure bases on
the fact, that with increasing pressure the crystallization en-
thalpy decreases. For instance, in comparison to the latent
heat at normal pressure the latent heat of water at 200 MPa
is approximately 30% lower.

The contribution of the volume forces in the energy
equation is expressed by

PV ¼
Ec
Fr
¼

W 2
0

cp0T 0

W 2
0

g0L0

¼ g0L0

cp0T 0

: ð94Þ

For the high pressure treatment of bio-substances the
product cp0T 0 is higher than g0L0. Thus, the dimensionless



Table 1
Estimated values of dimensionless numbers/groups

Dimensionless number/group Order of magnitude

Ec 10�8

1/Pe 10�3

1/Ra 10�7

PD ¼ Ec=Re 10�10

PV ¼ Ec=Fr 10�6

PP ¼ 1=DaRe 1
1/Re 10�2

1/Fr 103

g*PA/Re2 103

Fo 10�2

1/Ste 1
H/Ste 10�1

PT 10�2
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number PV becomes very small and the influence of this
volume force on the energy balance can be neglected.

The relationship of the diffusive to convective heat
transport for the cases with forced convection is written as

1

PrRe
¼ 1

Pe
¼ k0

cp0g0

g0

q0W 0L0

¼ a0

W 0L0

ð95Þ

and with free convection is described through

1

PrGr
¼ 1

Ra
¼ k0

cp0g0

g2
0

q2
0a0g0DTL3

0

¼ a0m0

a0g0DTL3
0

: ð96Þ

The dimensionless group in the last term of the conserva-
tion equation of momentum

PP ¼
1

DaRe
¼ L2

0

K0

g0

q0W 0L0

¼ L0m0

K0W 0

ð97Þ

characterizes the resistance force that decelerates the veloc-
ity of a substance during freezing. As soon as the liquid
medium changes into the solid state, the permeability of
the mushy region decreases proportionally to the amount
of the solid volume fraction. In pure solid phase the perme-
ability K0 reaches its smallest value and the velocity of
completely frozen part is zero. The theoretical analysis of
this dimensionless group shows that by very high velocities
of fluid the resistance force can be insufficient to decelerate
or completely stop the fluid flow. In such a case this term
would lose its importance in the momentum equation.
Unlike, the deceleration of the fluid is more effective if Re
converges to zero.

Table 1 presents the estimated orders of magnitude for
several dimensionless numbers and groups in the governing
equations. These values are calculated with the thermo-
physical properties of water and the characteristic lengths
of laboratory high pressure chambers (see [24]).
6. Conclusions

The high pressure technology opens new possibilities for
processing and product development of bio-substances. In
order to understand the mechanisms and phenomena
occurring during high pressure treatment, the fundamental
analysis of dimensionless governing equations describing
the processes with forced and free convection is carried
out. The influence of geometrical ratio of the chamber
(L/D) is also taken into account for dimensional analysis
of velocity components in x-, and y-direction. Because of
technological advantages of phase change under high pres-
sure conditions, the mathematical description of the phase
transitions in momentum and energy equation is consid-
ered. The high pressure treatment of bio-substances
consists of three steps. During compression and decom-
pression process the forced convection dominates the fluid
flow in the vessel. The free convection is the major mecha-
nism during the pressure holding phase. From the differen-
tial equations, the dimensionless numbers: Pr, Re, Ec, Fr,
Ste and Da, which describe forced convection with phase
change at high pressure are acquired. In the dimensionless
description of the processes with dominating free convec-
tion, the Gr number describes additionally the influence
of the buoyancy force. The temperature increase caused
by compression is expressed with the dimensionless number
PV. This number depends on the thermal expansion coeffi-
cient and the initial temperature of a pressurized medium.
In systems with low velocities of a pressurized fluid, the
irreversible transformation of the kinetic energy into the
thermal energy (the dissipation function) can be neglected.
The phase change in solid substances can be described with
H, Fo and Ste number.

The dimensional analysis presented in the current paper
gives a general overview of thermo-fluid-dynamical mecha-
nisms of high pressure processes. The determination of
dimensionless numbers is of great importance for transfor-
mation of laboratory investigations and results into the
industrial scale.

References

[1] P.W. Bridgman, The coagulation of albumen by pressure, J. Biol.
Chem. 19 (1914) 511–512.

[2] P.W. Bridgman, The thermal conductivity of liquids under pressure,
Proc. Am. Acad. Arts Sci. 59 (1923) 141–169.

[3] M.F. San Martin, G.V. Barbosa-Canovas, B.G. Swanson, Food
processing by high hydrostatic pressure, Crit. Rev. Food Sci. Nutr. 42
(6) (2002) 627–645.

[4] J.C. Cheftel, Effects of high hydrostatic pressure on food constituents:
an overview, in: C. Balny, R. Hayashi, K. Heremans, P. Masson
(Eds.), High Pressure and Biotechnology, Colloque. INSERM/John
Libbey and Co. Ltd, London, 1992, pp. 195–209.

[5] D. Knorr, Advantages, opportunities and challenges of high hydro-
static pressure application to food systems, in: R. Hayashi, C. Balny
(Eds.), Proceedings of the International Conference on High Pressure
Bioscience and Biotechnology, High Pressure Bioscience and Bio-
technology Kyoto, Japan, 1996, pp. 279–287.

[6] P. Först, F. Werner, A. Delgado, The viscosity of water – especially at
subzero degrees centigrade, Rheologica Acta 39 (2000) 566–573.

[7] P. Först, F. Werner, A. Delgado, On the pressure dependence of the
viscosity of aqueous sugar solutions, Rheol. Acta 41 (2002) 369–374.

[8] M. Pehl, A. Delgado, An in situ technique to visualize temperature
and velocity fields in liquid biotechnical substances at high pressure,
in: H. Ludwig (Ed.), Advances in High Pressure Bioscience and
Biotechnology, Springer, Heidelberg, 1999, pp. 519–522.



3018 W. Kowalczyk, A. Delgado / International Journal of Heat and Mass Transfer 50 (2007) 3007–3018
[9] M. Pehl, F. Werner, A. Delgado, First visualization of temperature
fields in liquids at high pressure, Exp. Fluids 29 (2000) 302–304.

[10] A. Delgado, Chr. Hartmann, Pressure treatment of food: instanta-
neous but not homogeneous effect, in: R. Winter (Ed.), Proceedings of
the 2nd International Conference on High Pressure Bioscience and
Biotechnolgy, Advances in High Pressure Bioscience and Biot-
echnolgy Dortmund, 2003, pp. 459–464.

[11] C. Hartmann, A. Delgado, Numerical simulation of convective and
diffusive transport effects on a high-pressure-induced inactivation
process, Biotechnol. Bioengi. 79 (1) (2002) 94–104.

[12] C. Hartmann, A. Delgado, J. Szymczyk, Convective and diffusive
transport effects in a high pressure induced inactivation process of
packed food, J. Food Eng. 59 (2003) 33–44.

[13] P.W. Bridgman, Water in the liquid and five solid forms under
pressure, Proc. Am. Acad. Arts Sci. 47 (1912) 439–558.

[14] J.C. Cheftel, J. Levy, E. Dumay, Pressure-assisted freezing and
thawing: principles and potential applications, Food Rev. Int. 16 (4)
(2000) 453–483.

[15] M.T. Kalichevsky, D. Knorr, P.J. Lillford, Potential food applica-
tions of high-pressure effects on ice-water transitions, Trends Food
Sci. Technol. 6 (1995) 253–259.

[16] V.R. Voller, An overview of numerical methods for solving phase
change problems, in: W.J. Minkowycz, E.M. Sparrow (Eds.),
Advances in Numerical Heat Transfer, Taylor & Francis, Washing-
ton, DC, 1997, pp. 341–380 (Chapter 9).

[17] V.R. Voller, M. Cross, N.C. Markatos, An enthalpy method for
convection/diffusion phase change, Int. J. Numer. Methods Eng. 24
(1987) 271–284.
[18] V.R. Voller, A.D. Brent, C. Prakasch, The modelling of heat mass
and solute transport in solidification systems, Int. J. Heat Mass
Transfer 32 (9) (1989) 1719–1731.

[19] C.R. Swaminathan, V.R. Voller, Towards a general numerical scheme
for solidification systems, Int. J. Heat Mass Transfer 40 (12) (1997)
2859–2868.

[20] W.D. Bennon, F.P. Incropera, A continuum model for momentum,
heat and species transport in binary solid–liquid phase change
systems – I. Model formulation, Int. J. Heat Mass Transfer 30 (10)
(1987) 2161–2170.

[21] W.D. Bennon, F.P. Incropera, A continuum model for momentum,
heat and species transport in binary solid–liquid phase change
systems – II. Application to solidification in a rectangular cavity,
Int. J. Heat Mass Transfer 30 (10) (1987) 2171–2187.

[22] J. Ni, F.P. Incropera, Extension of the continuum model for transport
phenomena occurring during metal alloy solidification – I. The
conservation equations, Int. J. Heat Mass Transfer 38 (7) (1995)
1271–1284.

[23] J. Ni, F.P. Incropera, Extension of the continuum model for transport
phenomena occurring during metal alloy solidification – II. Micro-
scopic considerations, Int. J. Heat Mass Transfer 38 (7) (1995)
1285–1296.

[24] W. Kowalczyk, Chr. Hartmann, A. Delgado, Modelling and
numerical simulation of convection driven high pressure induced
phase changes, Int. J. Heat Mass Transfer 47 (5) (2004)
1079–1089.

[25] J. Stichlmair, Kennzahlen und Ähnlichkeitsgesetze im Ingenieurwe-
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